

 1

DEPARTMENT OF

ELECTRONICS & COMMUNICATION ENGINEERING

LAB MANUAL

Microprocessors & Microcontrollers Lab

II - B. Tech. II - Semester

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY

(Autonomous, Accredited by NBA & NAAC, an ISO 9001:2008 certified institution)

 (Sponsored by Siddhartha Academy of General & Technical Education)

VIJAYAWADA – 520 007,

ANDHRA PRADESH

 2

Microprocessors &

Microcontrollers

Lab MANUAL
Prepared by

Mr. K. Phani Rama Krishna

&

Dr. Haji. Habibulla Md.

 3

PRASAD V POTLURI SIDDHARTHA INSTITUTE OF TECHNOLOGY
DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING

Microprocessors & Microcontrollers Lab

LIST OF EXPERIMENTS

Syllabus

Expt.

No.
Contents Mapped CO

I
16-bit Signed and unsigned Arithmetic operations, ASCII –

arithmetic operations
CO1,CO4

II Arithmetic operations – Multi byte Addition and Subtraction CO1,CO4

III Logical operations, Sum of Squares, Sum of Cubes CO1,CO4

IV
Write ALP to find smallest, largest number, arrange numbers in

Ascending order, Descending order in a given series.
CO1,CO4

V
Using string operation and Instruction prefix: Move Block,

Reverse string, String comparison
CO1,CO4

VI
Introduction to MSP430 launch pad and Programming

Environment. (Study Experiment)
CO2, CO4

VII
Read input from switch and Automatic control/flash LED (soft-

ware delay).
CO2,CO3,CO4

VIII Read Temperature of MSP430 with the help of ADC.
CO2,

CO3,CO4

IX Interrupts Programming Example Using GPIO CO2, CO3,CO4

X Use Of Comparator To Compare The Signal Threshold Level CO2, CO3, CO4

Additional Experiments:

1. Average of numbers

2. Conversion of Packed BCD to Unpacked BCD, Packed BCD to ASCII

 4

INSTRUCTIONS TO THE STUDENTS

1. Students are required to attend all labs.

2. Students have to bring the lab manual cum observation book, record etc. along with them

whenever they come for lab work.

3. Should learn the prelab questions. Read through the lab experiment to familiarize

themselves with the components and assembly sequence.

4. Should utilize 3 hours’ time properly to perform the experiment and to record the readings.

Do the calculations, and take signature from the instructor.

5. If the experiment is not completed in the stipulated time, the pending work has to be

carried out in the leisure hours or extended hours.

6. Should submit the completed record book according to the deadlines set up by the

instructor.

7. For practical subjects there shall be a continuous evaluation during the semester for 15

internal marks and 35 end examination marks.

8. Out of 15 internal marks, 10 marks shall be awarded for day-to-day work and 5 marks to

be awarded by conducting an internal laboratory test.

 5

EXPERIMENT-1

16-bit Signed and unsigned Arithmetic operations, ASCII – arithmetic operations

AIM: To perform 16-bit Signed and unsigned Arithmetic operations, ASCII – arithmetic

operations using TASM.

Experimental Requirements: PC loaded with TASM software ,8086 microprocessor kit and

power supply.

Procedure for doing DEBUG program:

Step1:

Open the dosbox icon placed in the desktop

Step 2:

type the following

mount c c:\8086

and press enter

then dos box will be mounted to the local directory.

Step 3:

type c:

and press enter

You will be getting the screen as:

c:\

Step4:

Now Type

debug

,and press enter

Now you are going to get hyphen symbol

Step5: Type

a ,and press enter

Type your program as shown in the attachment.

Step6:

Type

R IP

,and press enter

The instruction pointer should point to the starting address of the program.

If not , type the starting address of the program.For Example, 0100

 6

Step7:

We need to do single step execution.

For single step execution:

type

t as shown in the attachment.

Till in the end of the program we need to repeat.

Procedure for TASM:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

 7

Programs

 8-BIT OPERATIONS

1.ADDITION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DB 78H

OPR2 DB 23H

RES DB 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AL, OPR1

MOV BL, OPR2

ADD AL, BL

MOV RES, AL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 8

2. SUBTRACTION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DB 36H

OPR2 DB 23H

RES DB 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AL, OPR1

MOV BL, OPR2

SUB AL, BL

MOV RES, AL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 9

3. MULTIPLICATION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DB 15H

OPR2 DB 05H

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AL, OPR1

MOV BL, OPR2

MOV AH,00H

MUL BL

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 10

4. DIVISION:

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DB 20H

OPR2 DB 05H

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AL, OPR1

MOV BL, OPR2

MOV AH,00H

DIV BL

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 11

 1.Addition

-A

072A:0100

-A 400

072A:400 MOV AL,55

072A:4002 MOV BL,32

072A:4004 ADD AL,BL

072A:4006

-R IP

IP 0100

-R IP 4000

-T

-G

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 12

2.Subraction :

-A

072A:0100

-A 4000

072A:4000 MOV AL,37

072A:4002 MOV BL,36

072A:4004 SUB AL,BL

072A:4006

-R IP

IP 0100

-R IP 4000

-T

-G

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 13

3.Multiplication:

-A

072A:0100

-A 400

072A:400 MOV AL,54

072A:4002 MOV BL,21

072A:4004 MUL,BL

072A:4006 INT 03

-R IP

IP 0100

-R IP 4000

-T

-G

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 14

4. Divison

-A

072A:0100

-A 400

072A:400 MOV AL,24

072A:4002 MOV BL,4

072A:4004 DIV,BL

072A:4006

-R IP

IP 0100

-R IP 4000

-T

-G

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 15

16-bit ADDITION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 78BCH

OPR2 DW 23FEH

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

ADD AX, BX

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 16

16-bit SUBTRACTION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 36BBH

OPR2 DW 23CCH

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

SUB AX, BX

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 17

16-bit MULTIPLICATION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 1506H

OPR2 DW 0AC05H

RES1 DW 1 DUP (0H)

RES2 DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

MOV DX,0000H

MUL BX

MOV RES1, AX

MOV RES2,DX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 18

16-bit. DIVISION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 0F506H

OPR2 DW 0AC50H

RES1 DW 1 DUP (0H)

RES2 DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

MOV DX,0000H

DIV BX

MOV RES1, AX

MOV RES2,DX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 19

16 BIT SIGNED ARITHMETIC OPERATIONS

1. ADDITION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 0BCDEH

OPR2 DW 0ABCDH

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

STC

ADD AX, BX

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 20

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 0BCDEH

OPR2 DW 0ABCDH

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

CLC

ADC AX, BX

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 21

2. SUBTRACTION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 0BCDEH

OPR2 DW 0ABCDH

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

STC

SUB AX, BX

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

 Theoretical Calculations:

 22

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 0BCDEH

OPR2 DW 0ABCDH

RES DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

CLC

SBB AX, BX

MOV RES, AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 23

3. MULTIPLICATION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 1111H

OPR2 DW 1111H

RES1 DW 1 DUP (0H)

RES2 DW 1 DUP (0H)

DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

MOV DX,0000H

MUL BX

MOV RES1, AX

MOV RES2, DX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 24

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 1111H

OPR2 DW 8888H

RES1 DW 1 DUP (0H)

RES2 DW 1 DUP (0H)

DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

MOV DX,0000H

IMUL BX

MOV RES1, AX

MOV RES2, DX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 25

4. DIVISION:

 ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 2224H

OPR2 DW 1111H

RES1 DW 1 DUP (0H)

RES2 DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

MOV DX,00H

DIV BX

MOV RES1, AX

MOV RES2, DX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 26

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DW 2224H

OPR2 DW 1111H

RES1 DW 1 DUP (0H)

RES2 DW 1 DUP (0H)

 DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV AX, OPR1

MOV BX, OPR2

MOV DX,00H

IDIV BX

MOV RES1, AX

MOV RES2, DX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX: DX:

FLAG STATUS:

Theoretical Calculations:

 27

ASCII OPERATIONS

1. AAA:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AL, 35H

MOV BL,39H

MOV AH,00H

ADD AL,BL

AAA

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 28

2. AAS:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AL, 39H

MOV BL,35H

MOV AH,00H

SUB AL,BL

AAS

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Theoretical Calculations:

 29

3. AAM:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AL, 05H

MOV BL,09H

MOV AH,00H

MUL BL

AAM

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

 30

4. AAD:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AL, 05H

MOV BL,06H

MOV AH,03H

AAD

DIV BL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL: AH: BL:

OUTPUT:

AL: AH:

FLAG STATUS:

Result: Arithmetic operation –Signed and unsigned Arithmetic operation, ASCII – arithmetic

operations were performed.

 31

EXPERIMENT – 02

Arithmetic operations – Multi byte Addition and Subtraction,

AIM : To perform multibyte addition, subtraction, sum of squares and sum of cubes using

TASM.

Experimental Requirements : PC loaded with TASM software

Procedure:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

 32

1.MULTI BYTE ADDITION

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DB 12H, 34H, 56H, 78H

OPR2 DB 23H, 34H, 66H, 86H

RES DW 1 DUP (0H)

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV SI, OFFSET OPR1

MOV DI, OFFSET OPR2

MOV BX, OFFSET RES

MOV CX, 0004H

MOV AH, 00H

BACK: MOV AL, [SI]

MOV DL, [DI]

ADC AL, DL

MOV [BX], AL

INC SI

INC DI

INC BX

LOOP BACK

INT 03H

CODE ENDS

END START

END

 33

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

SI: DI:

OUTPUT:

RES:

FLAG STATUS:

Theoretical Calculations:

 34

2. MULTI BYTE SUBTRACTION

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

OPR1 DB 23H, 34H, 66H, 86H

OPR2 DB 12H, 34H, 56H, 78H

RES DW 1 DUP (0H)

DATA ENDS

CODE SEGMENT

START:MOV AX, DATA

MOV DS, AX

MOV SI, OFFSET OPR1

MOV DI, OFFSET OPR2

MOV BX, OFFSET RES

MOV CX, 0004H

MOV AH, 00H

BACK: MOV AL, [SI]

MOV DL, [DI]

SBB AL, DL

MOV [BX], AL

INC SI

INC DI

INC BX

LOOP BACK

INT 03H

CODE ENDS

END START

END

 35

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

SI: DI:

OUTPUT:

RES:

FLAG STATUS:

Theoretical Calculations:

Result: Multibyte addition, subtraction has been performed using TASM.

 36

EXPERIMENT-03

Logic operations – Shift and rotate – Sum of Squares, Sum of Cubes

AIM: To perform logical operations on 16-bit using TASM.

Experimental Requirements: PC loaded with TASM software

Procedure:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

 37

Logical Instructions:

1.AND:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 3355H

MOV BX, 5355H

AND AX, BX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 38

2. OR:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 3355H

MOV BX, 5355H

OR AX, BX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 39

3. NOT:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 3355H

NOT AX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 40

4. XOR:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 3355H

MOV BX, 5355H

XOR AX, BX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 41

5.TEST:

 ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 3355H

MOV BX, 5355H

TEST AX, BX

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: BX:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 42

Shift and Rotate Instructions

1. SHR:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

SHR AX, CL

 INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 43

2. SHL:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

SHL AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 44

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

SAL AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 45

3. ROTATE RIGHT:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

STC

ROR AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 46

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

CLC

ROR AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 47

4. ROTATE LEFT:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

STC

ROL AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 48

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

CLC

ROL AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 49

5. ROTATE RIGHT THROUGH CARRY:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

STC

RCR AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 50

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

CLC

RCR AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 51

6. ROTATE LEFT THROUGH CARRY:

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

STC

RCL AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 52

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AX, 0ABCDH

MOV CL, 04H

CLC

RCL AX, CL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AX: CL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations:

 53

SUM OF SQUARES (…)

ASSUME CS:CODE

CODE SEGMENT

START: MOV CL,07H

MOV DX,0000H

MOV AH,00H

L1: MOV AL,CL

MUL CL

ADD DX,AX

LOOP L1

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

CL:

OUTPUT:

DX:

FLAG STATUS:

Theoretical Calculations:

 54

SUM OF SQUARES IN AN ARRAY

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

ARR1 DB 05H,07H,06H,04H

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

MOV DS,AX

MOV SI,OFFSET ARR1

MOV CX,0004H

MOV DX,0000H

MOV AH,00H

L1: MOV BL,[SI]

 MOV AL,BL

 MUL BL

 ADD DX,AX

 INC SI

 LOOP L1

 INT 03H

 CODE ENDS

 END START

 END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

ARR1:

OUTPUT:

DX:

FLAG STATUS:

Theoretical Calculations:

 55

SUM OF CUBES (…)

ASSUME CS:CODE

CODE SEGMENT

START: MOV CL,07H

MOV DX,0000H

MOV AH,00H

L1: MOV AL,CL

MUL CL

MUL CL

ADD DX,AX

LOOP L1

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

CL:

OUTPUT:

DX:

FLAG STATUS:

Theoretical Calculations:

 56

SUM OF CUBES IN AN ARRAY

ASSUME CS:CODE,DS:DATA

DATA SEGMENT

ARR1 DB 05H,07H,06H,04H

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

MOV DS,AX

MOV SI,OFFSET ARR1

MOV CX,0004H

MOV DX,0000H

MOV AH,00H

L1: MOV BL,[SI]

 MOV AL,BL

 MUL BL

 MUL BL

 ADD DX,AX

 INC SI

 LOOP L1

 INT 03H

 CODE ENDS

 END START

 END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

 57

Result:

INPUT:

ARR1:

OUTPUT:

DX:

FLAG STATUS:

Theoretical Calculations

Result: Logic operations – Shift and rotate – sum of squares and sum of cubes using TASM

were performed.

 58

EXPERIMENT-4

Smallest, largest number, arrange numbers in Ascending order, Descending order

AIM: To find smallest, largest number, arrange numbers in ascending order, descending

order in a given series.

Experimental Requirements: PC loaded with TASM software

Procedure:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

Smallest number

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DB 35H, 26H, 19H, 56H, 44H

DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

 59

MOV CX, 0004H

MOV SI, OFFSET LIST

MOV BL, [SI]

L2: MOV AL, [SI+1]

CMP BL, AL

JB L1

MOV BL, AL

L1: INC SI

LOOP L2

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

LIST:

OUTPUT:

BL:

FLAG STATUS:

Theoretical Calculations

 60

Largest number

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

LIST DB 35H, 26H, 19H, 56H, 44H

DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV CX, 0004H

MOV SI, OFFSET LIST

MOV BL, [SI]

L2: MOV AL, [SI+1]

CMP BL, AL

JA L1

MOV BL, AL

L1: INC SI

LOOP L2

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

 61

Result:

INPUT:

LIST:

OUTPUT:

BL:

FLAG STATUS:

Theoretical Calculations:

Ascending order

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

STR1 DB 'BINDHU$'

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV DX, 0005H

L3: MOV CX, DX

MOV SI, OFFSET STR1

L2: MOV AL, [SI]

CMP AL, [SI+1]

JB L1

XCHG AL, [SI+1]

XCHG AL, [SI]

L1: INC SI

LOOP L2

DEC DX

JNZ L3

INT 03H

CODE ENDS

END START

END

 62

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

STR1:

OUTPUT:

STR1:

FLAG STATUS:

Theoretical Calculations

 63

Descending order

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

STR1 DB 'BINDHU$'

DATA ENDS

CODE SEGMENT

START: MOV AX, DATA

MOV DS, AX

MOV DX, 0005H

L3: MOV CX, DX

MOV SI, OFFSET STR1

L2: MOV AL, [SI]

CMP AL, [SI+1]

JA L1

XCHG AL, [SI+1]

XCHG AL, [SI]

L1: INC SI

LOOP L2

DEC DX

JNZ L3

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

 64

Result:

INPUT:

STR1:

OUTPUT:

STR1:

FLAG STATUS:

Theoretical Calculations

RESULT: Finding the smallest, largest numbers and arranging given numbers in ascending

and descending orders using TASM are performed.

 65

EXPERIMENT-5

STRING OPERATIONS

Aim : String operation and Instruction prefix: Move Block, Reverse string, Inserting,

Deleting, Length of the string, String comparison.

Experimental Requirements : PC loaded with TASM software

Procedure:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

 66

STRING OPERATIONS

1. MOVING A BLOCK OF DATA

ASSUME CS: CODE, DS: DATA, ES:EXTRA

DATA SEGMENT

ORG 1000H

STR1 DB 'HI FRIEND$'

COUNT EQU $-STR1

DATA ENDS

EXTRA SEGMENT

ORG 2000H

STR2 DB 1 DUP(?)

EXTRA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,EXTRA

MOV ES,AX

MOV SI,OFFSET STR1

MOV DI,OFFSET STR2

MOV CL,COUNT-1

REP MOVSB

INT 03H

CODE ENDS

END START

END

 67

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

STR1:

OUTPUT:

STR2:

FLAG STATUS:

Theoretical Calculations

 68

2. REVERSE OF A STRING

ASSUME CS: CODE, DS: DATA

DATA SEGMENT

ORG 1000H

STR1 DB 'HI FRIEND$'

COUNT EQU $-STR1

DATA ENDS

CODE SEGMENT

START:

MOV AX, DATA

MOV DS, AX

MOV SI, OFFSET STR1

MOV DI, OFFSET STR1+COUNT-2

MOV CL, COUNT/2

BACK: MOV AL,[SI]

XCHG [DI], AL

XCHG [SI], AL

INC SI

DEC DI

LOOP BACK

INT 03H

CODE ENDS

END START

END

 69

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

STR1:

OUTPUT:

STR1:

FLAG STATUS:

Theoretical Calculations

 70

3. STRING COMPARISON

ASSUME CS:CODE, DS:DATA,ES:EXTRA

DATA SEGMENT

ORG 1000H

STR1 DB 'HI FRIEND$'

COUNT EQU $-STR1

DATA ENDS

EXTRA SEGMENT

ORG 2000H

STR2 DB 'HIFRIEND'

EXTRA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,EXTRA

MOV ES,AX

MOV SI,OFFSET STR1

MOV DI,OFFSET STR2

MOV CL, COUNT-1

REP CMPSB

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

 71

Result:

INPUT:

STR1:

STR2:

OUTPUT:

Z=

FLAG STATUS:

Theoretical Calculations

ASSUME CS:CODE, DS:DATA,ES:EXTRA

DATA SEGMENT

ORG 1000H

STR1 DB 'HI FRIEND$'

COUNT EQU $-STR1

DATA ENDS

EXTRA SEGMENT

ORG 2000H

STR2 DB 'HI FRIEND$

EXTRA ENDS

CODE SEGMENT

START:

MOV AX,DATA

MOV DS,AX

MOV AX,EXTRA

MOV ES,AX

MOV SI,OFFSET STR1

MOV DI,OFFSET STR2

MOV CL, COUNT-1

REP CMPSB

INT 03H

CODE ENDS

END START

END

 72

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

STR1:

STR2:

OUTPUT:

Z=

FLAG STATUS:

Theoretical Calculations:

Result: String operation and Instruction prefix: Move Block, Reverse string and String

comparison were performed.

 73

EXPERIMENT-6

Introduction to MSP430 launch pad and Programming Environment. (Study

Experiment)

Aim: To write an assembly language program to blink an LED

Experiment Requirements: PC loaded code composer studio, MSP430 LAUNCHPAD

Procedure:

1. Open code composer studio

2. Open file go to new and select CCS project

3. A CCS window opens.

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USB1 (default)

 Give a project name.

 Select empty project with main.c and press finish.

4. Write C code in main.c.

5. Select build project and build your program. It will check for errors.When it is

error free go to next step, otherwise repeat until the program is error free.

6. Go to target configuration

 Select user defined

 Select new target

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

7. Open New Target configuration

 Right click on new target configuration

 Click on Launch selected configuration

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USB1 (default)

 and Save.

 74

8. Open the Run menu

 Select connect project

 Again open Run

 Load Project

 Browse the project

 select the project.out

 select,save and ok.

9. Run the program.

10. Observe the output in the console window or on the board.

Program:

#include <msp430.h>

void main(void) {

 WDTCTL = WDTPW | WDTHOLD; // Stop watchdog timer

 P1DIR |= (BIT0+BIT6); // P1.0 (Red LED), P1.1 (Green LED)

 while(1)

 {

 volatile unsigned long i;

 P1OUT &= ~BIT6; //Green LED -> OFF

 P1OUT |= BIT0; //Red LED -> ON

 for(i = 0; i<10000; i++); //delay

 P1OUT &= ~BIT0; //Red LED -> OFF

 P1OUT |= BIT6; //Green LED -> ON

 for(i = 0; i<10000; i++); //delay

 }

}

READ INPUT FROM SWITCH AND GLOW LED

Result: Blinking of LED on the MSP430 launch pad was performed.

 75

EXPERIMENT-7

 Read input from switch and Automatic control/flash LED (soft-ware delay).

Aim: To read input from switch and Automatic control/flash LED (soft-ware delay).

Experiment Requirements: PC loaded code composer studio, MSP430 LAUNCHPAD

Procedure:

1. Open code composer studio

2. Open file go to new and select CCS project

3. A CCS window opens.

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USB1 (default)

 Give a project name.

 Select empty project with main.c and press finish.

4. Write C code in main.c.

5. Select build project and build your program. It will check for errors.When it is

error free go to next step, otherwise repeat until the program is error free.

6. Go to target configuration

 Select user defined

 Select new target

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

7. Open New Target configuration

 Right click on new target configuration

 Click on Launch selected configuration

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USB1 (default)

 and Save.

 76

8. Open the Run menu

 Select connect project

 Again open Run

 Load Project

 Browse the project

 select the project.out

 select,save and ok.

9. Run the program.

10. Observe the output in the console window or on the board.

Program:

#include <msp430.h>

/*

 * main.c

 */

void main(void)

{

 WDTCTL = WDTPW + WDTHOLD; // Stop watchdog timer

 P1DIR |= 0x01; // Set P1.0 to output direction

 P1OUT |= BIT3;

 P1REN |= BIT3;

 while (1) // Infinite Loop

 {

 if ((BIT3 & P1IN)) // active low switch

 {

 P1OUT &= ~0x01; // if P1.3 is 1(not pressed),reset P1.0

 }else

 {

 P1OUT |= 0x01; // else set P1.0

 }

 }

 }

Result: Reading input from switch and Automatic control/flash LED (soft-ware delay) has

been performed.

 77

EXPERIMENT-8

Read Temperature of MSP430 with the help of ADC.

AIM: To Read Temperature of MSP430 with the help of ADC.

Experiment Requirements: PC loaded code composer studio, MSP430 LAUNCHPAD

Procedure:

1. Open code composer studio

2. Open file go to new and select CCS project

3. A CCS window opens.

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USB1 (default)

 Give a project name.

 Select empty project with main.c and press finish.

4. Write C code in main.c.

5. Select build project and build your program. It will check for errors.When it is

error free go to next step, otherwise repeat until the program is error free.

6. Go to target configuration

 Select user defined

 Select new target

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

7. Open New Target configuration

 Right click on new target configuration

 Click on Launch selected configuration

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USB1 (default)

 and Save.

 Open the Run menu

 Select connect project

 Again open Run

 78

 Load Project

 Browse the project

 select the project.out

 select,save and ok.

8. Run the program.

9. Observe the output in the console window or on the board.

program:

#include <msp430g2353.h>

int temp = 0;

int main(void){

WDTCTL = WDTPW | WDTHOLD; //stop the watchdog timer

//Select 1.5 V, 64 clock cycles, enable ADC interrupt, Turn on the reference generator

ADC10CTL0 = SREF_1 + REFON + ADC10ON + ADC10SHT_3 + ADC10IE;

//Select input channel 10 and divide the clock frequency by 4

ADC10CTL1 = INCH_10 + ADC10DIV_3;

//Enable and Start conversion

ADC10CTL0 |= ENC + ADC10SC;

//Enter low power mode

__bis_SR_register(LPM0_bits + GIE);

//fetch the temperature value from ADC10MEM register

temp = ADC10MEM;

//convert it into degree celsius

temp = ((temp * 27069L - 18169625L)>>16);

return 0;

}

//ISR

#pragma vector = ADC10_VECTOR

__interrupt void adc_interrupt(void)

{

__bic_SR_register_on_exit(CPUOFF);

}

RESULT: Hence read Temperature of MSP430 with the help of ADC

 79

EXPERIMENT-9

 Interrupts Programming Example Using GPIO

AIM: To perform Interrupts Programming Example Using GPIO.

Experiment Requirements: PC loaded code composer studio, MSP430 LAUNCHPAD

PROCEDURE:

1. Open code composer studio

2. Open file go to new and select CCS project

3. A CCS window opens.

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Give a project name.

 Select empty project with main.c and finish.

4. Write C code in main.c.

5. Select build project and build your program.

6. Go to target configuration

 Select user define

 Select new target

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

7. Open New Target configuration

 Right click on new target configuration

 Click on Launch selected configuration

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

8. Open the Run menu

 Select connect project

 Again open Run

 80

 Load Project

 Browse the project

 select the project.out

 select,save and ok.

9. Run the program.

10. Observe the output in the console window or on the board.

Program

#include <msp430g2353.h>

unsigned int wdtCounter = 0;

void main(void)

{

 WDTCTL = WDT_MDLY_32; // Set Watchdog Timer interval to ~32ms

 IE1 |= WDTIE; // Enable WDT interrupt

 P1DIR |= BIT0; // Set P1.0 to output direction

 P1OUT |= BIT0; // Turn on LED at 1.0

 P1IE |= BIT3; // enable P1.3 interrupt

 __enable_interrupt();

 for(;;)

 {

 }

}

// Watchdog Timer interrupt service routine

#pragma vector=WDT_VECTOR

__interrupt void watchdog_timer(void)

{

 if(wdtCounter == 249)

 {

 P1OUT = 0x00; // P1.0 turn off

 wdtCounter = 0;

 _BIS_SR(LPM3_bits + GIE); // Enter LPM3 w/interrupt enabled

 }

 else
 {

 wdtCounter++;

 }

}

RESULT: Hence performed Interrupts Programming Example Using GPIO

 81

EXPERIMENT-10

 Use of Comparator to Compare the Signal Threshold Level

AIM: Use Of Comparator To Compare The Signal Threshold Level.

Experimental Requirements : PC loaded code composer studio, MSP430 LAUNCHPAD

Procedure:

1. Open code composer studio

2. Open file go to new and select CCS project

3. A CCS window opens.

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Give a project name.

 Select empty project with main.c and finish.

4. Write C code in main.c.

5. Select build project and build your program.

6. Go to target configuration

 Select user define

 Select new target

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

7. Open New Target configuration

 Right click on new target configuration

 Click on Launch selected configuration

 Select MSP430G2253 in the target.

 Establish the connection by selecting the TI MSP430 USBI

 Save.

8. Open the Run menu

 Select connect project

 Again open Run

 82

 Load Project

 Browse the project

 select the project.out

 select,save and ok.

9. Run the program.

 Observe the output in the console window or on the board

Program

LED ON Case:

#include <msp430g2353.h>

int main (void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

P1DIR |= 0x01; // P1.0 output

CACTL1 = CARSEL + CAREF0 + CAON; // 0.25 Vcc = -comp, on

CACTL2 = P2CA4; // P1.1/CA1 = +comp

while (1) // Test comparator_A output

{

if ((CAOUT & CACTL2))

P1OUT |= 0x01; // if CAOUT set, set P1.0

else P1OUT &= ~0x01; // else reset

}

}

LED OFF Case:

#include <msp430g2353.h>

int main (void)

{

WDTCTL = WDTPW + WDTHOLD; // Stop WDT

P1DIR |= 0x01; // P1.0 output

CACTL1 = CARSEL + CAREF0 + CAON; // 0.25 Vcc = -comp, on

CACTL2 = ~P2CA4; // P1.1/CA1 = -comp

while (1) // Test comparator_A output

{

if ((CAOUT & CACTL2))

P1OUT |= 0x01; // if CAOUT set, set P1.0

else P1OUT &= ~0x01; // else reset

}

}

Result: Hence used Comparator To Compare The Signal Threshold Level.

 83

EXPERIMENT-11

AVERAGE OF N NUMBERS

AIM : To perform average for a given series using TASM.

Experimental Requirements: PC loaded with TASM software

Procedure:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

Program:

1. AVERAGE OF N NUMBERS ((1+2+3+4+…N)/N

ASSUME CS:CODE

CODE SEGMENT

START:

MOV AX,0000H

MOV BL,08H

MOV CL,BL

L1: ADD AL,CL

ADC AH,00H

LOOP L1

DIV BL

INT 03H

CODE ENDS

END START

END

 84

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

BL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations

2. AVERAGE OF N NUMBERS IN AN ARRAY

ASSUME CS:CODE, DS:DATA

DATA SEGMENT

LIST DB 12H,23H,45H,56H,70H

DATA ENDS

CODE SEGMENT

START: MOV AX,DATA

MOV DS,AX

MOV AX,0000H

MOV BL,05H

MOV CL,BL

MOV SI,OFFSET LIST

L1: ADD AL,[SI]

ADC AH,00H

 85

INC SI

LOOP L1

DIV BL

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

ARR1:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations

Result: Average for a given series was found.

 86

EXPERIMENT-12

Conversion of Packed BCD to unpacked BCD and BCD to ASCII

AIM : To convert packed BCD to unpacked BCD and BCD to ASCII using TASM.

Experimental Requirements: PC loaded with TASM software

Procedure:

1. Switch on the PC, press windows+R then enter CMD.

2. Find the folder where TASM is located. check whether TASM.EXE, TLINK.EXE,

TD.EXE are present or not

3. Enter into the directory where TASM is located by using cd... or directory name:

4. Type cd tasm in which the three files are present .Now we will be getting into c: \ or

d:\ with tasm directory.

5. Type edit then a new window will be opened in which the program is entered.

6. After entering the program save the file with <filename.asm>.

7. Check for the errors or warnings by using TASM <filename> and press enter...

8. If there are no errors, then type TLINK <filename> to compile the file. If errors go

back to the edit and do the necessary corrections and repeat the previous step.

9. Next type td <filename > to debug the executable file then will be getting the

message program has no symbol table, press ok and then write down the instructions,

registers and flags status before execution .

10. For step by step execution press F8.and for direct execution press F9 and then write

down the instructions, registers and flags status after execution .Go to dump if

required for noting down the required inputs and outputs.

 87

Program:

1.PACKED BCD TO UNPACKED BCD

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AL, 56H

MOV AH, AL

SHR AH, 04H

AND AL, 0FH

INT 03H

CODE ENDS

END START

END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations

 88

2. BCD TO ASCII

ASSUME CS: CODE

CODE SEGMENT

START:

MOV AL, 56H

MOV AH, AL

SHR AH, 04H

AND AL, 0FH

OR AX,3030H

INT 03H

CODE ENDS

END START

 END

ADDRESS OPCODE MNEMONIC OPERAND COMMENTS

Result:

INPUT:

AL:

OUTPUT:

AX:

FLAG STATUS:

Theoretical Calculations

Result: packed BCD to unpacked BCD, BCD to ASCII conversion has been Performed.

